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There are at least three powerful insights for educational
technology researchers and designers from recent
neuroscience studies of the brain and from cognitive
science research findings: First, our brains learn and
process two very different types of knowledge; non-
conscious, automated, procedural, or implicit knowledge,
and conscious, controllable, declarative knowledge.
Evidence also suggests that we believe we control our
own learning by conscious choice, when in fact nearly
all mental operations are highly automated, including
learning and problem solving. Thus, first, educational
technology designers must focus more on the teaching
of procedural (application) knowledge. Second, human
beings have a very limited capacity to think during
learning and problem solving, and when that capacity is
exceeded, thinking and leaming stop without us being
aware. Thus, designers must strive to avoid cognitive
overload by focusing all presentations on essential infor-
mation to be learned. Third, nearly all of our instruction-
al design and learning theories and models fail to
account for the influence of non-conscious cognitive
processes and therefore are inadequate to deal with
complex learning and performance. Evidence for these
painte ic deccrihed and their implications for instruction
and the learning of problem-solving and higher-order
thinking skills are discussed. Models of learning and
instruction that appear to help overcome some of
these biological and cognitive barriers are described. In
addition, suggestions for new research questions on
interactive technology-based learning environments that
take account of the three insights are also described.
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Introduction

Scientific progress results not only from new ideas and
technologies but also from new ways of framing old
ideas and technologies. The purpose of this discussion
is to suggest that as educational technologists, we would
derive a huge benefit from reframing the importance
of evidence gathered in the past two centuries about
automated, non-conscious cognitive processes (also
called procedural, implicit, and tacit knowledge). This
suggestion is based on the assumption that we do not
yet fully appreciate the huge impact of our automated
psychological processes on complex learning, think-
ing, goal pursuit, motivation, self-regulation, and
problem solving. This situation may have caused
important gaps in the design of instructional research
and practice and held back the development of design
theories and models intended for use in new technolo-
gies that support learning.

We seem tempted to view evidence about non-
conscious decision-making and problem-solving
processes as an odd and unimportant sideline in the
history of education and psychology. Perhaps we avoid
the idea because it has been the basis for some very
strange and unscientific theories in the past, such as
the magical “collective unconscious” theory proposed
by the European psychologist Carl Jung (1956) or
Sigmund Freud’s dark presentation of unconscious
urges (Maclntyre, 1958). Whatever the reason, we
have avoided overwhelming evidence that non-
conscious processes control much of our learning and
performance. Failing to account for these processes
has led us to adopt questionable assumptions to
support our learning research and design theories as
well as the measures we use for assessing the impact of
instruction. The goal of this article is to encourage a
refocusing of our future learning research and design
efforts to fully integrate what we know about auto-
mated knowledge into both research and practice.

Automated Non-Conscious Cognitive
Processes and Self-Regulation

For at least the past two centuries, philosophers and
psychologists have commented on the existence of
automated and unconscious mental processes. From
Samuel Johnson’s 18th century contrarian views on the
exercise of free will to the more recent evidence on
controlled and automated processes presented by
researchers such as Schneider and Shiffrin (1977) and
Wegner (2002), evidence about the ironic impact of
automated processes has been constant but largely
ignored in education. Estimates suggest that as adults
we are consciously aware of as little as 30 percent of
our cognitive operations and automated procedural
knowledge, and thus as much as 70 percent of our
learning and problem solving may be automated and



unconscious (Bargh & Chartrand, 1999). Clark, Feldon,
van Merriénboer, Yates, and Early (2008) review
evidence from many studies providing evidence that
when experts in many different subject-matter areas
teach or train, they leave out approximately 70 percent
of the knowledge required to perform adequately. This
lack of complete descriptions of how to solve complex
problems and perform important cognitive processes
leads to major learning problems for most students
(Clark, Yates, Early, & Moulton, 2010). Landa (1997)
noted that when expert thinkers and performers engage
in practical and cognitive tasks and the solving of
problems, they are aware mostly of physical actions
involved and knowledge used. However, “they are
largely unaware of the mental actions (operations) they
carry out in their minds when performing tasks and
solving problems” (p. 679).

In many respects, the problem is even more com-
plicated than simply ignoring the huge impact of
non-conscious knowledge processes in instruction and
learning. It appears that most human beings are con-
vinced that they make conscious and willful decisions
to set and pursue goals, including learning and perform-
ance goals. Yet strong evidence exists to support the
claim that once people intend to set a goal, make a deci-
sion, or act, unconscious processes are controlling a
significant element of what our conscious minds attribute
to our will (Bargh, Gollwitzer, & Oettingen, 2010). For
example, over 25 years ago, we had solid evidence from
brain scans that when subjects are asked to choose
which one finger they will move on either hand, they
report making the decision long (800 ms) after the brain
indicates that muscles have already started to move a
specific finger—the one that subjects later report having
moved because they chose it. When interrupted before
the choice, but after the brain signals the finger to move,
subjects deny they have made a choice (Libet, Gleason,
Wright, & Pearl, 1983). More recently, we have solid
evidence that consciously unnoticed cues in an en-
vironment can cause us to invest more mental effort in
a learning task (Bargh, Collwitzer, Lee-Chai, Barndollar,
& Troschel, 2001), help others learn and perform, even
when faced with difficult barriers (Custers, Maas,
Wildenbeest, & Aarts, 2008), or that people can be
primed with very brief (250 ms) subconscious cues to
express specific values in reference to novel objects or
opinion statements, even though the value they believe
they have consciously decided to express takes 30 times
longer to decide and express (Bargh et al., 2010). These
and many other experimental indicators of the influence
of complex and important non-conscious cognitive
processes that seem to be conscious, willful, and delib-
erate have been repeated many times by many different
researches in different national laboratories (see Bargh et
al., 2010 for a review).

In spite of the overwhelming evidence of the impact

of non-conscious cognitive processes on learning,
motivation, and decision making, most of our instruc-
tional research and indeed most of educational “sci-
ence” emphasizes the learning of conscious, declara-
tive knowledge and more or less ignores automated,
unconscious knowledge (Sun, Slusarz, & Terry, 2005).
Is it possible that we have developed an educational
science that emphasizes only 30 percent of our self-
regulatory and learning processes? If so, what are the
consequences for learning problem-solving, higher-
order thinking skills, and self-regulatory processes?

Automated Routines for

Automating Knowledge

We appear to have innate, unconscious routines for
automating all behavior that is perceived as successful
and is repeated over time when it is first learned and
applied (cf. Anderson, 1983, 1993, 1996; Kunst-
Wilson & Zajonc, 1980). In addition, neuroscience
evidence indicates that the expression of automated
behavior appears to be pleasurable (Helmuth, 2001).
Brain imaging has revealed that behavioral addiction
may largely be due to environmental events that trigger
automated behaviors without our awareness (Clark &
Clark, 2010). Behavioral addictions appear to use the
same neural reward process activated in drug additions
(albeit to a lesser degree). Furthermore, in a recent
review, Zajonc (2001) cogently argues that emotion-
laden preferences for routine may be conditioned via
benign and repeated exposure to the environmental
conditions that elicit automated behavior. Moreover,
these preferences may be stronger if repeated exposure
occurs outside of conscious awareness! Thus, not only
may automated behavior be addictive and its forma-
tion automated, but our expression of automated
knowledge may be pleasurable as well. Investigation
of this process in learning is the subject of John
Anderson’s (1983, 1993, 1996) view of cognitive archi-
tecture and processes. His ACT-R theory describes a
compelling, evidence-based version of the stages and
events in the process by which learning objectives
engage cognitive routines that gradually transform
conscious declarative knowledge into automated
procedural routines over time.

Perhaps it is too difficult for us to accept evidence
that not only are we unaware of important cognitive
processes but that some of those unconscious processes
cause us to wrongly believe that we exercise effortful,
effective self-control. Evidence against our deliberate
self-control comes from diverse areas, such as research
on stereotypes, the development of our beliefs about
the influence of our willful decisions, the accuracy
of our memory for past expectations about future
events, the processes that support complex learning
and problem solving, and the development of
advanced professional expertise (Wegner, 2002).
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Non-Conscious Cognitive Processes
Cause Learning and Performance Errors
Wegner (2002) has provided very compelling evi-

dence that while most of us believe that we exercise
conscious, deliberate control over our own decisions
and actions, this belief is largely an illusion. Wegner
(2002) argues persuasively that a range of both physi-
cal and automated mental mechanisms that are large-
ly automated and only occasionally influenced by
will and intention cause our behavior. Yet, he argues,
our attributions for our behavior will either focus
exclusively on conscious will as the primary agent of
our behavior or attribute causality to external events.

Wegner (1997) also presents evidence for an auto-
mated “ironic” monitoring and control sub-system for
cognition that attempts to help us avoid mistakes but
often produces errors. He gives evidence that when
cognitive load exceeds working memory capacity, the
condition produces an unconscious, uninterruptible,
cognitive process that “...searches for mental content
signaling a failure to create the intended state of
mind” and introduces “...different, unwelcome, and
unintended behavior” (p. 148).

This phenomenon may help explain a wide range of
human errors, from “slips of the tongue” in stressful
speaking situations to the documented inability most
students experience when attempting to overcome pre-
viously learned and automated “misconceptions”
when learning science principles or a new language.

Teachers May Not Be Able to
Describe Most of What They Know

Even more compelling for education is evidence
that automated knowledge may prevent teachers and
other experts from accurately describing to students
the very effective analytical strategies they apply and
the decisions they make when they solve problems in
their area of expertise. Clearly, if teachers are largely
unaware of their own cognitive operations, they can
hardly be expected to teach these to their students.

Chao and Salvendy (1994) used four different strate-
gies to study the explanations that expert computer
programmers gave trainees when describing three
highly structured tasks, such as how to diagnose and
solve bugs in complex computer programs. They found
that even top experts who were motivated to share
their expertise described an average of only 41 percent
of the important strategies they used often. When tasks
were fairly simple and involved fewer decisions, the
expert descriptions were 50 percent accurate.
However, for more complex tasks requiring many
decisions, their accuracy slipped to only 21 percent. If
two or more experts were consulted about the same
task, the accuracy of the reports increased by an aver-
age of only about 12 percent with each new expert.
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Feldon (2004) found a 70 percent gap in the expla-
nations about the design of memory experiments given
by psychology and education professors who taught
research design. Feldon asked his subjects to use a
computer program that permitted them to design
memory experiments and then were presented with the
data their experiment produced. He asked them to
explain how they made decisions and compared their
explanations with the decisions they actually made as
recorded by the program. Is it possible that the most
expert teachers unintentionally withhold 70 percent
of their non-conscious expertise from their students,
while believing that they have given 100 percent? Is
this unintentional withholding a reasonable explana-
tion for the evidence provided by Hinds (1999) that
teachers and other experts significantly underestimate
the difficulty level novices experience when trying to
learn to perform complex tasks?

Explicit and Implicit Beliefs and
Attitudes About Ourselves and Others

Another compelling example of this phenomenon
can be found in research on stereotypes. Most of us
believe that we are fair and impartial when dealing with
others, yet that belief seems to conflict with the implicit
attitudes reflected in the biased decisions subjects make
about others when they are stressed and/or cognitively
overloaded in experiments (Devine, 1989; Greenwald
& Banaji, 1995). Mental operations that were once
thought to require conscious, effortful processing, such
as the reduction of “cognitive dissonance” when our
values or beliefs conflict, now appear to be largely
automated and effortless. Lieberman, Ochsner, Gilbert,
and Schacter (2001) present evidence from a series of
studies showing that attempts to exert conscious control
over mental conflict reduction does not change the
outcome for most subjects, but it does make the eventu-
al resolution of the conflict much less efficient. In their
study, amnesiacs who could not remember that they had
experienced a conflict about choices were much more
effective and efficient in resolving the conflict than uni-
versity students who reached similar conclusions more
slowly—apparently because their conscious reasoning
interfered with an automated cognitive process.

Finally, if we accept the evidence about the “hindsight
bias” phenomenon studied by Hoffrage and his col-
leagues at the Max Planck Institute in Berlin (Hoffrage,
Hertwig, & Gigerenzer, 2000), even our memory for
our past actions and beliefs is not free of automated and
non-conscious distortion. It appears that in most
instances we remember having made an accurate
prediction when in fact our earlier expectations were
far from accurate. They document many cases in which
we unconsciously “reconstruct” a “memory” for our
previous expectations and predictions about the out-
come of a future event only after the event has occurred.



With the weight of evidence about the pervasive
and influential impact of non-conscious cognitive
processes, it seems reasonable to ask about their
function in learning and performance. The discussion
turns next to theories and research that have attempted
to explain why we have dual (conscious and non-
conscious) knowledge systems and what part they play
in learning and performance.

Explanations for the Benefits and

Costs of Automated Cognitive Processes

Cognitive psychologists concerned with learning
and problem solving (e.g., Anderson, 1983, 1993;
Anderson & Lebiere, 1998; Clark & Clark, 2010;
Newell, 1990; Schneider & Chein, 2003; Sweller, 2006)
have suggested that we need automated, “unconscious”
knowledge to circumvent the processing limits on con-
sciousness (working memory). Past estimates (Miller,
1955) placed the information capacity of conscious
working memory at approximately seven (plus or minus
two) chunks of related declarative knowledge. Yet that
number has been cut in half recently as a result of an
extensive review by Cowan (2001), whose estimate of a
four (plus or minus one) chunk limit is now generally
accepted. Sweller (2006) speculates that the evolution-
ary purpose of severe limits on how much information
we can consciously consider is to protect us from rapid
learning and changes in our behavior. He suggests that
if we were able to learn a great deal of untested and/or
faulty new routines very quickly, we might learn and
express self-destructive behavior. Automated knowledge
is difficult to learn and apparently cannot be automated
until it is perceived as useful and successful with repeti-
tion over time (Anderson, 1996).

John Anderson’s ACT-R (e.g., Anderson & Lebiere,
1998) theory describes the automatization process in
specific, evidence-based detail. Anderson’s learning
theory has provided the key components of some of the
most effective of our newest and most effective instruc-
tional design theories for learning complex knowledge
(cf. Merrill, 2002a, 2002b; van Merriénboer, 1997). The
presumed benefits of automated knowledge in the form
of analytical and decision strategies and procedures is
that it allows us to circumvent limits on conscious
thinking and express tested and effective learning and
problem-solving routines, while leaving working memo-
ry space to process the novel components of tasks.

Strategies for Research on Automated

Cognitive Processes in
Learning and Instruction
The primary goal of this discussion is to suggest that
we need to encourage a more intense and focused dia-
logue about the evidence for automated knowledge
and its potential impact on our understanding of the

processes that surround learning and instruction.
A partial list of the questions and issues that, if
developed, might provide considerable benefit
follows. The reader will no doubt think of many other
issues that deserve attention.

Examine Research Problems that Might Be
Solved by Hypotheses Related to Automatization
of Cognitive Processes and Procedural Knowledge
One positive consequence of the study of automated
knowledge is that many areas of educational research
may be ripe for reconsideration. One way to describe
Sweller’s (2006) cognitive load theory is that it
describes the conditions under which automated
processes protect working memory. Cognitive load
theory has already made a highly significant contribu-
tion to research on the design of multimedia instruc-
tion and other forms of instructional presentations used
in technology-based learning contexts (e.g., Mayer,
2001, 2009).

Self-Regulation. Other areas that might benefit from a
consideration of automated processes include, for
example, research on self-regulation of learning and
motivation (e.g., Baumeister & Vohs, 2004). Studies
that attempt to teach learners to control self-regulatory
strategies in short treatments might be one of the most
likely causes of evidence about failures in attempts to
deliberately control cognitive processing (Efklides,
2005; Molden & Dweck, 2006). Is it possible that self-
regulatory strategies have to be taught as procedures
and practiced over time under the conditions in which
they must be expressed until they become automated?
Is it also possible that the most effective self-regulatory
strategies will be very context or condition specific?

Misconceptions. The role of misconceptions in
learning (e.g., Kendeou & van den Broek, 2005) may
also need to be reframed, since misconceptions may
be automated and very difficult to either change
or replace. Is it possible that the reason this area is
receiving less attention in recent years is because
studies that have attempted to modify misconceptions
have largely failed (e.g., Vosniadou, 1994)? Is it also
possible that studies focused on ways to change
automated knowledge might breathe new life into the
study of misconceptions in learning science and
other topics (e.g., Vosniadou, 2002)? While this litera-
ture has focused primarily on science learning, is it
also possible that misconceptions might inhibit learn-
ing in nearly all areas where prior experience and
expectations conflict with new learning?

Unguided Inquiry-Based and Constructivist Learning.

Studies on unguided constructivist and inquiry-based
learning are problematical, since only learners with
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Table 1. Mayer’s (2009) multimedia design principles.

Principle Guideline

Students learn better from words and
pictures than from words alone.

Multimedia

Students learn better when
corresponding words and pictures are
presented near rather than far from
each other on the page or screen.

Spatial
Contiguity

Students learn better when
corresponding words and pictures are
presented simultaneously rather than
successively.

Temporal
Contiguity

Students learn better when extraneous
words, pictures, and sounds are
excluded rather than included.

Coherence

Students learn better from animation
and narration than from animation and
on-screen text.

Modality

Students learn better from animation
and narration than from animation,
narration, and on-screen text.

Redundancy

Design effects are stronger for low-
knowledge learners than for high-
knowledge learners and for high-
spatial learners rather than for low-
spatial learners.

Individual
Differences

Students learn better when cues (e.g.,
underlining, arrows) are added that
highlight the main ideas and
organization of the words.

Signaling

Students learn better when they control
pacing of segmented narrated
animations rather than continuous
pace.

Pacing

Students learn better when new terms
are learned before introducing complex
processes, principles, or procedures.

Concepts First

Students learn better when narration is
conversational and uses personal
pronouns such as “you” and “yours.”

Personalization

Students learn better when a human
voice is used for narration rather than a
machine voice or foreign accented
voice.

Human Voice

advanced prior subject-matter knowledge appear to thrive
in unguided learning settings (Mayer, 2004). Learners
who lack adequate automated learning strategies for
specific domains may need instructionally based
guidance to learn and instruction in how to do problem
solving; or learning strategies might need to be imple-
mented in the same way that other cognitive strategies
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are taught—and automated (Kirschner, Sweller, & Clark,
2006). Merrill (2002a, b) has reviewed current, popular
instructional design theories and has recommended
the types of guidance that appear to underlie the most
effective systems. A critical component of the most effec-
tive guidance seems to be showing learners how to
decide and act to accomplish authentic tasks and prob-
lems, then providing increasingly challenging part and
whole-task practice and corrective feedback until learn-
ing occurs. Similarly, previously automated skills are
the most likely reason why learners with high prior
knowledge do not require procedural instruction in the
form of demonstrations or worked examples, but
those with intermediate or lower prior knowledge find it
difficult or impossible to succeed without them (e.g.,
Kalyuga, Chandler, Tuovinen, & Sweller, 2001).

Computer-Based Learning, Serious Games, and Online
Education. Another recent insight from extensive research
on cognitive load theory (Mayer, 2004; Sweller, 2006)
concerns the destructive power of common features of
multimedia instruction and raises an even larger cause for
concern about automated processes. Mayer (2001, 2004,
2009) has identified and studied the most common tech-
nology-based learning instructional design strategies that
overload learners mentally and cause learning problems.
In most cases, overload is caused by providing students
with information in any form that distracts them from pro-
cessing the essential conceptual or procedural knowledge
required to perform the task they are learning.

In other instances, mediated presentations tend to
provide rich visual and sound contexts for instructional
messages that overload a student’s working memory.
Since we all have a limited capacity to think when learn-
ing, we must use our thinking capacity to process relevant
information. When instruction provides distractions, such
as music, animated agents that give us advice, tabs that
allow us to get additional information, pages of text to
read on the screen, and key information embedded in
irrelevant contextual information, we must spend effort
ignoring the irrelevant to select and learn the relevant
information (Clark & Choi, 2007). Mayer (2001, 2009)
identifies a number of multimedia and technology-based
learning design principles that, if implemented, tend to
help us avoid cognitive overload and help learning (see
Table 1). Mayer’s principles apply to what is commonly
called screen design (for computer-based learning), or
graphic design for the printed page. Each principle is
based on many different studies, and all are intended to
focus students’ attention on only relevant portions of
instruction and not to distract them with irrelevant
and dysfunctional depictions of information, even if
the distractions are interesting or entertaining.

In addition to the evidence about the computer-
based learning design strategies, we also have distressing
results from research on the use of electronic games as



motivational features in technology-based learning cours-
es. A number of studies and reviews of studies that have
examined the benefits of games have been conducted
(e.g., Chen & O'Neil, 2005; O’Neil, Wainess, & Baker,
2005). All of the studies that have been published in
reputable journals have reached a negative conclusion
about learning from games. Apparently, people who play
serious games often learn how to play the game and per-
haps gain some factual knowledge related to the game—
but there is no evidence in the existing studies that games
teach anyone anything that could not be learned through
some other, less expensive, and more effective instruc-
tional methods. Even more surprising is that there is no
compelling evidence that games lead to greater motiva-
tion to learn than other instructional programs.

Task Analysis, Self-Report, and Think-Aloud Protocols.
Studies that make heavy use of self-report strategies for
capturing the knowledge of subject-matter experts
through task analysis and “think-aloud” protocols (e.g.,
Davison, Vogel, & Coffman, 1997) are most likely flawed
because once cognitive processes are automated, they
are no longer available for conscious monitoring and so
cannot be accurately and completely described during a
task analysis or “think-aloud” protocol (Feldon, 2007;
Wheatley & Wegner, 2001). The more promising
Cognitive Task Analysis strategy (e.g., Clark & Estes, 1997;
Schraagen, Chipman, & Shalin, 2000) seems more likely
to capture the cognitive operations that experts have auto-
mated and therefore find difficult to describe completely
and accurately. Cognitive task analysis is one of the
important and underappreciated features of instructional
design systems that specialize in complex knowledge
(e.g., Clark et al., 2008; van Merriénboer, 1997).

It may also be necessary to rethink the measures we use
for assessment, including our reliance on the immediate
post-testing of declarative knowledge in instructional
research and the use of self-report measures to assess
motivational processes and outcomes (e.g., Stone,
Turkkan, Bachrach, Jobe, Kurtzman, & Cain, 2000).

For example, using secondary (speed of response to
random cues during problem solving) measures of
distraction and automaticity of knowledge, both Gimino
(2000) and Flad (2002) found preliminary evidence that
self-report measures of how much mental effort learners
invested to achieve learning goals may be flawed because
of automated defaults that occur when working memory
is overloaded (Clark, 1999). In addition, if the gradual
automation of procedural knowledge results in increased
speed and automaticity, is it possible that two learners
with the same score on an application exercise or
learning test where time to respond is not controlled or
measured might actually have very different amounts,
stages, and types of learning? Is it possible that a learner
who has attained very high levels of expertise may not
be able to describe the cognitive strategy used to solve

problems as accurately as a less expert student?

In our laboratory we have examined the use of “think-
aloud” instruction used by professors of surgery to teach
new surgeons. We divided one years class of surgical
trainees into two groups and gave one group cognitive task
analysis (CTA) worked example descriptions of a common
surgical procedure, while the control group received
“think-aloud” demonstrations from top surgery professors.
We monitored the surgical trainees as they performed the
procedure in the hospital for the next year (Velmahos,
Toutouzas, Sillin, Chan, Clark, Theodorou, & Maupin,
2004). The results indicated that the CTA group made
significantly fewer mistakes than the control group, who
made some very serious mistakes (but the number and
type were consistent with “think-aloud” taught surgeons in
previous classes). Most interesting was the finding that
both groups performed equally well on the part of the pro-
cedure they could visually inspect, but the experimental
group excelled in areas that involved critical decision
making. We can observe and model what we can
perceive, but we cannot observe the making of decisions.

Conduct Studies that Examine Methods
of Circumventing, Changing, and/or
Replacing Automated Knowledge

The costs and negative impact of automated knowledge
are due to its inaccessibility and the many ways that
it silently interferes with our learning, some of which are
described in the introduction to this article. One other
important difficulty is that automated knowledge is
extremely difficult and perhaps even impossible to modi-
fy when it is no longer functional and may be interfering
with performance (Clark, 2008; Sasaki, 2004). While
automated routines are difficult to learn and require many
hours of application to speed up and automate, once
automated they appear to be very difficult or impossible
to modify, eliminate, or “unlearn.”

Sasaki (2004) has reported on the efforts we have
invested in our center over the past five years to monitor
research in this area. He describes three strategies that
appear to have been tested: (1) over-learning new knowl-
edge that replaces existing knowledge by extending
practice so that new knowledge is stronger (e.g., Zajonc,
2001); (2) goal substitution or circumventing the
expression of maladaptive knowledge or processes by
strengthening intentions to pause and implement new
learning so that environmental conditions lead to the
expression of new routines (e.g., Gollwitzer, 1999): and
(3) activating an automated process to modify or replace
maladaptive, activating automatic processes such as those
described by Lieberman et al. (2001).

In a chapter that reviewed the research on personal
and organizational change, Clark (2008) stresses three
points: (1) Adults are largely unaware of many of the goals
they are pursuing and the strategies they are using. The
consequence of this situation is that we are largely unable
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to accurately report our attempts to change. (2) When
change strategies fail, one of the important but largely
unexamined causes is the interference caused by the
automated and dysfunctional cognitive behaviors we
wish to change. (3) We know very little about how to
unlearn dysfunctional automated and unconscious
knowledge to clear the way for new covert and overt
behavior. His review of the research on changing
automated knowledge is similar to the conclusion
reached by Sasaki (2004), with one exception; he stresses
the use of social support in the form of peer assessment
and feedback on change efforts.

The greatest interest and most systematic research on
changing automated routines can be found among our
colleagues in psychotherapy and counseling psychology
(e.g., Bargh & Chartrand, 1999). It appears to be likely
that complex learning most often requires a change in
previously learned routines, and thus learning difficulties
might be due in part to the change-resistant qualities of
automated prior knowledge and processes. Given the
evidence about the reward potential of automated cogni-
tive processes, because of their links to addictive neural
pathways and reward centers (Helmuth, 2001), some
researchers (e.g., Prochaska, DiClemente, & Norcross,
1992) are exploring the use of powerful psychological
interventions used in the treatment of drug addictions to
change many individual and organizational behaviors.

Focus Research on Instructional Methods that
Most Effectively Teach Automated Knowledge
and Design Models Incorporating This Research

Most of our current instructional design models and
most instructional research is narrowly focused on the
learning of conscious, declarative knowledge. This gen-
eralization extends to studies of social learning and
motivational process as well as issues connected to
school and classroom culture. John Anderson’s system-
atic research on learning provides strong evidence that
declarative knowledge, when used to accomplish tasks
and solve problems, gradually transforms into automated
procedural knowledge (Anderson, 1993; Anderson &
Lebiere, 1998). His research, extending over a quarter
century, makes a very compelling case that all knowledge
we intend to apply (as opposed to knowledge we intend
only to be able to consciously remember) must be
proceduralized and automated in order to circumvent the
limits on working memory.

While other researchers have developed slightly differ-
ent views of this process (cf. Sun et al., 2005), most reach
a similar conclusion about the importance of the auto-
maticity process. Thus, we must encourage more research
that attempts to improve our support for automatization
processes during learning and problem solving. Since
declarative and procedural knowledge appear to interact
constantly to support performance on all complex tasks,
we must also examine the interaction between these two
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types of knowledge.

The best current example of this approach can be found
in the exceptional instructional design theory of
van Merriénboer (Paas, Renkl, & Sweller, 2003; van
Merriénboer, 1977; van Merriénboer, Kirschner, & Kester,
2003). Van Merriénboer’s 4C/ID model is solidly based on
Anderson’s ACT-R theory and related studies. The design
activities that flow from his model support the learning of
both declarative and procedural knowledge. While
the van Merriénboer design model has been primarily
field tested by applying it to training in large government
organizations, it would be very interesting to develop a
version of the approach for application on a large scale
in formal primary, secondary, and post-secondary educa-
tional settings.

A misconception that has plagued the development of
advanced educational technology design theories and
models is the assumption that every context or setting
requires a different design model. This belief has resulted
in a huge variety of models, whose differences are not
readily apparent (Merrill, 2002a, b). Clark and Estes (1997,
2000) have suggested an alternative that might help us
reduce redundancy and focus our development on a few
different models. Their suggestion is that we develop
two-stage design models. The first stage of the models
would describe a research-based “generic” approach to
designing all instruction for any type of learning task, and
the second stage would specify how the design would be
“ranslated’ for the culture, expectations, and delivery
media found in specific educational settings where the
design would be used. The 4C/ID model (and similarly
complex knowledge design models) could be thought of
as first-stage models that would require a translation plan
for implementation in different cultural settings. Clark and
Estes (2002) suggest an approach to cultural translations.

It would also be helpful if we provided greater support
for instructional research that extends beyond a 30-minute
segment of learning in order to better understand the
mechanisms that influence the gradual automatization
of knowledge and the instructional methods that will pro-
vide effective external support for learning over time. We
might also benefit from improvements in the technology
available to support the measurement of various stages in
the development of both declarative and procedural
knowledge, including both dual-task (e.g., Flad, 2004;
Gimino, 2004) and neurological (Feldon, 2004) measures.

Conclusion

Reframing the importance of automated knowledge
may help us solve some persistent and difficult problems
in a number of research and practice areas, including
design theories and models for technology-based envi-
ronments. If we are successful at integrating automated
processes into our instructional theories, research, and
learning practice, we may solve many of our most difficult
and longstanding teaching and learning problems. If



we delay, we may find that our prominent role in
educational research and development is gradually
replaced by newer neuroscience and computational or
connectionist learning and performance theories that
focus on automated routines. O
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