Understanding Behavior of Organizations
To Improve Behavior in Organizations

Dale M. Brethower, Ph.D.
Professor Emeritus of Psychology
Western Michigan University

Human behavior occurs in an environment. The environment is usually a family, social group, work group, school, or workplace. Each of these environments is a system, with systemic properties and dynamics that influence how that system interacts with a person’s behavior. Behavioral systems analysis combines principles of behavior analysis and system analysis to understand how to improve behavior of persons and of organizations. Behavior analysis is powerful but has specific limitations. Behavioral systems analysis was invented to deal with the limitations and build on the power of behavior analysis. Six foundational notions that guide behavioral systems analysis are presented. The six notions can be found in or abstracted from the management literature and the general systems literature, but applying the foundational notions requires careful integration of systems principles and behavioral principles. Ongoing work by Rummler and others is testing and validating specific techniques for use of behavioral and systems principles within the context of living organizations.

Keywords: Behavioral systems analysis; systems principles; organizational behavior.

Introduction—six questions
Please allow me to set the stage for a discussion of behavior of and in organizations by giving brief answers to 6 questions:

1. Where does behavior occur? In an environment. The environment for much interesting behavior of individuals is the family or an organization such as a school or workplace; the environment for an organization is the marketplace or service area.

2. What controls/influences/guides behavior? Environmental variables. Specific environmental variables interacting with behavior that is conditioned by the individual’s genetic and learning history and by the organization’s relationships with customers or clients and suppliers.

3. Why is it important to know what controls/influences/guides behavior? If I know, I can be more effective more often as a parent or teacher or child care worker or supervisor or manager or leader or member of a family, social group, or work group.

4. Why is behavior analysis important? It is a way of understanding the interactions between a specific behavior and the environment. It is a way of understanding why individuals behave as they do, not in an abstract sense but in terms of very specific behaviors and very specific and measurable variables. It is a way of understanding what one must do to be more effective as a self-manager, friend, family member, manager, leader etc.

5. What do we know about families, social groups, and work groups as well as schools, workplaces, and other organizations? We know that they are systems.

6. What is a system? A set of interconnected variables—and the physical material and energy that enables the variables to function. We have always known that behavior
occurs in an environment but understanding that the environment is a system is not well
known. Or at least, the implications of “environment as system” are not well known.

The purpose of this paper is to help clarify some of the implications of understanding
“environment as system.” I will do so by explaining why a few well-known behaviorists had to
invent the field of behavioral systems analysis, a field that attempts to show what controls the
environmental variables that, in turn, impact behavior. (The short version is that we had to do it
if we were to develop schools and workplaces that support functional human behavior.)

Behavior Analysis, by itself, is powerful

Behavioral analysis is extremely powerful. The power is demonstrated in:

- dozens of research papers published each year
- dozens of books published in the past decade, and
- Hundreds of sessions presented at the International Association for Behavior Analysis,
 the American Association for Behavior Therapy, and other professional associations each
 year.

The power is demonstrated in documented and successful applications:

- in individual and group therapy
- in regular education and special education classrooms
- in for-profit and not-for-profit organizations
- in small, mid-sized, and large organizations
- With infants, toddlers, children, teenagers, young adults, adults, senior citizens,
 undergraduates, graduate students, faculty members, parents, people-with-a-special label,
 people-with-multiple labels, people labeled normal, supervisors, managers, and multiple
 kinds of professional people.

The power is demonstrated in applications to:

- skill acquisition,
- emotional development, and
- Complex cognitive processes.

Behavior Analysis is powerful — but In spite of the power and history of success, behavior
analysis is extremely limited. Not in the ways commonly attributed to it. People who would
know better if they did their homework write about “limitations of behaviorism” in textbooks and
the press. The “limitations” are often of the form “behaviorists can’t deal with X,” e.g., emotions
or complex cognitive processes. But these putative limitations are demonstrably false and have
been for at least 30 years.

Three real limitations of behavior analysis

Three limitations of behavior analysis are real, however:

- One is usually stated something like this: “Behaviorists know how to change behavior but
 behaviorists have nothing to say about what behaviors to change.” That is true.
A second limitation is that the most powerful variables affecting behavior are short term—very short term, seconds rather than minutes or days. Behavior analysis principles for dealing with long term effects are not as well supported and not as elegantly as are the short term effects of behavioral variables.

A third limitation is a limitation, not of the principles of behavior analysis, but of our ability to apply the principles. It is difficult in practice to modify the variables known to affect behavior in a specific setting.

Knowing how, not what

This limitation is quite real. The science of behavior is about “how” (the principles of behavior), not about “what,” i.e., what behavior should be changed or what behavior a person should exhibit. On the other hand, behaviorists deal with the limitation effectively by doing a functional analysis. That is, we determine the function of any behavior we are asked to analyze or asked to change. We analyze behavior that is considered functional or dysfunctional. We know that any specific behavior, including breathing, is functional under some conditions and dysfunctional under others. Oddly, not everyone is aware of that until it is pointed out to them.

Breathing is usually functional but not while swimming unaided under water. Acting friendly is usually functional but in some situations it is quite dysfunctional. And so on. After doing a functional analysis we know not only appropriate and inappropriate conditions for the behavior, but we also know the variables that must be in place to support functional behavior and NOT support the behavior people have dubbed dysfunctional. For example, we usually consider “doing assignments in school or at work” functional and “disrupting others” as dysfunctional.

We can then analyze the variables that function to support the “dysfunctional” behavior and specify variables necessary to support functional behavior.

Behaviorists sometimes question whether assignments are worth doing and recommend assignments that might be more valuable. Not because we are behaviorists but because we come equipped with common sense. Behavior analysis per se is very helpful in supporting recommendations about HOW but not very helpful in supporting recommendations about WHAT. We—and any moderately sensible person—can make guesses about which assignments lead to repertoires that will yield significant amounts of reinforcement later, such as assignments that build reading competence or math competence. We can then recommend that learners be given such assignments rather than assignments the keep the learners involved in tasks that develop no useful skill set, e.g., doing any one of about a zillion typical “seatwork” assignments. But someone without any skill in behavior analysis could make similar recommendations. We provide a rationale: it establishes a more functional skill set. Others use the same rationale using slightly different words. Behaviorists, supported by common sense, do quite well in altering variables constructively for clients. But that is because we have learned some functional behaviors ourselves and not because the science of behavior tells us in advance what behaviors are functional.

Behavior analysis provides explicit and powerful guidance about how. How to change a specific behavior. But behavior analysis per se has nothing to say about what. What behavior should be changed, to what level of performance, and under what conditions of occurrence? The answer to those questions depends upon the social, school, or work environment. And, alas, some of the behaviors considered functional in school or at work are functional only because people reward them and not because they add value to the person behaving or to the school or work setting.
Think about it: Did you ever wonder why there are so many stultifying assignments given to learners, K through Ph.D.? How could you have lived through your own education without wondering about that? It might be instructive to do a functional analysis of “assigner behavior” to see why such assignments are made. An example encountered early in my career: when enthusing about instructional procedures that “could enable children to master all the material taught in the entire first grade by October, November at the latest.” A teacher explained “You do not understand, young man! My job is to keep 32 squirming kids busy for the entire school year. If we finished the curriculum that soon, what would I do for the rest of the year?” A formidable problem, indeed, from that teacher’s very practical perspective. I was unprepared. I did not know that it was my job to answer that question and similar questions.

Perhaps you have wondered why so many people publish demonstrably inaccurate and ineffective material and wonder why so many people buy it. (To this day I consider it a flaw to use materials and procedures that fail to do in a year what can be done in a couple of months.) Perhaps you could do a functional analysis of the purchasing agent’s behavior, each curriculum committee member’s behavior, each textbook author’s behavior, each textbook publisher’s representative’s behavior, and the behavior of a few dozen others who are involved in the educational infrastructure that supports stultifying assignments and fails to support use of highly effective instructional material and techniques. The task of doing functional analyses for all the players would be gargantuan. We might avoid wasted effort by beginning with the plausible guess that each party learned to do what he or she does through behavior modeling, supported by social reinforcement by the persons whose behavior is imitated. Even if that turns out to be accurate, how do we then alter all that modeling? There are, literally, thousands of people involved in setting and maintaining the variables supporting stultifying assignments.

The relevant infrastructure includes, but is not limited to the teacher’s union, the principal’s association, the school board’s association, the political forces that support school board elections, the political forces that support—or fail to support—millage elections, the parents, the employers of graduates of the schools, the criminal justice system that deals with some of the many unsuccessful students, and the American Association of Retired Persons, among others. It might take a bit of doing to do a functional analysis of all that. But what do you suppose will happen unless all the variables affecting all the behaviors that support this entire infra-structure are managed differently? And what is there in behavior analysis that tells us how to go about managing all those variables? Even Sigrid Glenn’s brilliant work on meta-contingencies stops short of telling us how to do that.

Altering a few variables here and there is about as effective as using a few band aids to treat all the casualties in World War II, the Korean War, the Vietnam War, and wars since. It wouldn’t stop the dieing and wouldn’t stop the killing any more than altering a few variables would stop the failures and the perpetuation of incompetent educational practices. (And the latter are, arguably, more devastating than the effects of a war or two.)

This is not a criticism of the use of band aid-like attempts to improve performance and it is not a criticism, necessarily, of people who use band aid-like approaches. If all I have is band aids, I will use them to the best of my ability. I would be remiss not to. But surely, there is something better.

The power of immediacy

Malott (see Malott, R., & Trojan-Suarez, B., 2003) has written extensively about the power of immediacy—some of his early research was an investigation of the effects of long delays in
reinforcement. He showed such effects but it was much more difficult than showing effects of immediate reinforcement. He has provided many examples that show the longer term effects being overwhelmed by the more immediate effects. The power of immediacy helps explain why it is difficult to achieve the long term effects of saving rather than spending discretionary money, eating a healthy diet, or flossing our teeth. Ironically, the relatively weak long term effects are often appealed to in (unsuccessful) attempts to manage behavior whereas the relatively strong immediate effects are missed entirely or else their power is attributed to a defect in the individual. Examples of attributing defects to people can be found in discussions by pundits or psychologists about the “now generation” or “impulsive” people or the difficulties some people have “delaying gratification.”

But extensive research has shown that the here and now variables are powerful. Not just for flawed people but for all of us. The variables are powerful because of their small but cumulative effects. I believe the power of the effects is missed by people who do not observe the cumulative effects and just assume they could not be powerful. For example, a supervisor whose first reaction to nearly every suggestion is a frown and a mild criticism might not even notice the frown and might well forget the initial criticism on the relatively few occasions when she comes to understand that the suggestion is a valuable one. A supervisor (or parent) can be forgiven for underestimating the powerful influence of an immediate and consistent frown and criticism, especially if he is unaware of the frown and the fact that his first reaction is a criticism. But our ability to forgive the supervisor for this little quirk in behavior does not change the fact that it significantly reduces the probability that people will make suggestions. Even after the supervisor, frowning, reminds them that they should make suggestions.

Our ability to apply

A teacher in a classroom might know very well that one reason the class clown clowns is that the other children giggle or that the class bully bullies is that the other children are intimidated. But how can the teacher get the children to stop rewarding the clown and the bully? (It can be done but it cannot be done overnight.) Similarly, a sales manager might know that one reason a salesperson finds it difficult to ask for the sale is that, more often than not, the prospect says no. The sales manager can rarely if ever fix the problem by calling prospects and saying “My new salesperson will be calling on you soon. Please buy something.”

Similarly, we might find during a functional analysis that the bonuses in the bonus plan are too small or too delayed or too diluted or too improbable or too unattainable to be effective in supporting specific behavior in the workplace. But behavior analysts have no special magic that enables them to quickly change a compensation system. The fact of the matter is that many of the critical variables functional analysis identifies are not easy to change in a classroom, work group, social group, or workplace. We know how to changes the variables in a laboratory (when we are in charge of the lab) but we know much less about changing the many variables that exist in the workplace.

Thinking about these three limitations eventually drove me kicking and screaming out of my comfort zone in applied behavior analysis and into the wilds of—what? Politics? So I could start a new political party dedicated solely to the mission of “assuring that no child is left behind?” Or maybe just a little group of citizen activists around the school in my neighborhood? Fund raising? So I could raise millions of dollars and operate at least one school properly? (Properly according to whom? Me, of course, because I raised the money.)
My personal choice was not to dive into another discipline but to examine general systems theory for concepts and principles compatible with behavioral principles and capable of dealing with the issues of identifying, then actually supporting functional behavior in workplaces, including schools. I was not alone in making that choice. Dick Malott, Don Tosti, Dwight Harsbarger, and other behaviorists made the same choice, independently and for similar reasons: hence the field of behavioral systems analysis was created.

Behavioral Systems Analysis

"Why must behavioral systems analysis include both behavior analysis and general systems theory?"

I raised the question, in another paper, (Brethower, 2002) and answered it this way:

"Behavior analysis concepts help us understand how people function within the realities of the world they live in. General systems concepts help us understand how that world works. If we put the two areas of knowledge together we can do a better job of developing people's potential and enabling schools and workplaces to function more effectively."

Thus, by creating behavioral systems analysis we were not leaving behavioral analysis behind or downplaying the power and value of applied behavior analysis. To the contrary, we were saying that applied behavioral analysis is so powerful that we must find a way, as Dick Malott put it in his inimitable fashion, to “save the world with behavior analysis.”

I do not believe we can save the world without behavior analysis. But we cannot save the world with behavior analysis alone. We must work with people who know how to purify water, till the soil, fish the sea, build the shelters, transport the food, feed the hungry, manage enterprises, and do the incredibly large number of things necessary to save the world, or even one tiny part of it, a specific agency, or business.

“Government as usual,” “schooling as usual,” “business as usual,” and “helping professions as usual” are saving the world, arguably, better than at any time in history. Just as arguably, they are destroying the world more rapidly than at any time in history.

Some well-known or readily verifiable examples follow:

Example: Millions of prescriptions are written each year for anti-psychotics, more than for any other medical purpose. That might be OK if the number of psychotic persons were declining and if the millions of prescriptions were supported by competent psychological support. (Neither the decline nor the support obtains.)

Example: We are eating more fish, a good thing; but the oceans are being depleted of fish—a bad thing. The variables that support my behavior in eating fish indirectly support the variables that support over-fishing of the seas—a behavioral systems issue.

Example: Food is going to waste while millions of people around the world are starving—including many obese people who are eating junk food.

Example: Many businesses succeed but most fail, whether we are talking about BIG businesses or little start-ups. Maybe that is OK but surely it would be a good thing is a few of those businesses succeeded and continued to employ thousands of people.
Example: Many government programs have some room for improvement, do they not? According to US Bureau of the Census figures, poverty was on the decline in the USA before the “War on Poverty” was declared; it has been increasing since then (see Sowell, 1995, page 12). The government programs that support education have done a fine job of supplying school lunches but even there, the children who qualify for them are increasingly obese and diabetic. Project Head Start had noteworthy and documented successes but the successful programs were less likely to be continued than unsuccessful ones. (I have heard speakers at the International Association for Behavior Analysis describe, accurately I think, the variables supporting the common practice of robbing successful programs to throw good money after bad.)

All of these examples are within the domain of applicability of behavioral systems analysis. And, I believe, not attended to within any other domain. (Economics comes closest.) There is room for improvement and tools for improvement within behavioral systems analysis. There is enough room for improvement, I believe, to capture the efforts of idealistic young people and that tiny subset, young people with a scientific bent, young people who are at least as interested in actual results as they are in good intentions.

Perhaps we can, with the help of behavioral systems analysis, figure out what is working, what is functional in achieving a world worth saving. Perhaps we can support what is functional, rather than being diverted or distracted by the dysfunctional.

Can we solve the world’s problems by pointing out perceived deficiencies? It hasn’t happened yet, in spite of the hundreds of perceived deficiencies pointed out every day in the media. Insight is at most a first step and at worst a red herring. Knowing what is dysfunctional is not the same as knowing what is functional AND knowing how to implement the variables that support functional behavior of and in organizations.

Functional Analysis of Organizational Performance

The logic of functional analysis is the same in behavioral systems analysis as it is in behavior analysis. Only the techniques and the “organism” differ. The analyses work backwards from results, either existing or desired, to identify the variables influencing the results.

The organism for behavior analysis is the individual: A child, a parent, a student, a teacher, a principal, a worker, a manager, an executive, a chimpanzee, and a pigeon, whatever. That behavior of that individual and the actual and immediate variables affecting it are the focus. The long term variables are relevant and necessary to the task of identifying what behavior WILL BE functional in the future.

The “organism” for behavioral systems analysis is also the individual: an individual person, corporation, agency, industry, or government. The multiple behaviors and the actual, immediate, delayed, and multiple variables affecting them are the focus.

We often do a functional analysis of an individual person’s behavior in real time. But “real time” for a corporation or a government is measured in years and decades, not seconds. The data are more voluminous and cover much longer time periods. I can observe a student in a classroom for an hour and get decent data and partially verified hypotheses about the salient variables. But if I observe a corporation for an hour I probably have not seen anything salient. (Unless I spend the hour looking at the right data.) One of the major advances we have made in behavioral systems
analysis has been in developing better data collection techniques regarding the behavior of organizations.

For example, Kaplan and Norton (1996) have developed the concept of a Balanced Scorecard which says that several measures of organizational performance are required. There should be measures of performance over time for the money flow, strategy implementation, customer relationships, and internal functioning. The break-through thinking in the Balanced Scorecard concept is that no single measure dominates, multiple measures are essential. Systemic thinking.

Unfortunately, neither Kaplan, Norton, nor anyone else has developed a theory that enables us to identify which measures are systemically essential. Nor do they have a means of effectively connecting the organization measures to the performance of individuals. I might have missed it in all the Balanced Scorecard hype but I have found nothing that indicates Kaplan and Norton or their many fans perceive the absence of a system theory or logic as a deficit. There is no reason why they should: Kaplan and Norton are business experts, not behavioral systems analysts. (There is much that behavioral systems analysts could learn from business experts—and vice versa.)

Rummler (2003) is developing and validating:

- a robust and practical theory for identifying the essential systemic variables and
- Practical methods of connecting the performance of individuals to systemic variables.

In short, Rummler is close to developing the means of managing an organization intelligently, managing an organization for what it is, a system.

Rummler’s work on identifying systemic variables is similar in many ways to that of leading systems thinkers such as Russell Ackhoff, Herbert Simon, and Peter Drucker, among others. His differs from theirs in that it also applies the principle of behavior analysis. Consequently, his work on developing practical methods that link systemic variables to the performance of individuals has a solid basis in theory. It is not based on “best practices” which are exactly the practices that do a few things well and many things badly in most organizations today.

Rather than go into detail here about this ongoing work, let me describe the foundational notions for the work and then a list of references. The list of references is short and annotated, intended to show where to find additional information; it is not a long list intended to show you that I read a lot.

Foundational Notions - Toward managing organizations as systems:

1. External relationships must be managed intelligently.

Any living system must have “good” relationships with its environment to survive (cf. Miller, J.G., 1978). Commercial and not-for-profit organizations require good relationships with suppliers, customers or clients, and relevant agencies of government. Suppliers include suppliers of funds, technology, materials, people, and customers. Since suppliers, customers, agencies, and the marketplace in general are constantly changing; an organization must have ongoing sources of information about the changes and ongoing means of modifying what the organization does to maintain good relationships with ALL of them. Not just customers, not just suppliers of funds such as owners, investors, or granting agencies. All of them, all the time, all at once. Easy to
say, difficult to do. Impossible to do reliably without the right information about what is happening outside the organization.

Events occurring outside the organization generate information about critical external variables. Examine the stories about “great” leaders of nations and companies and you will find that they had one thing in common: for a time they were “in tune” with critical external variables. Many of them have another thing in common: they failed to stay “in tune,” demonstrating that they were lucky for a time but their luck ran out. To say it differently, their intelligence about external variables failed.

2. Internal activities must be managed intelligently.

Events occurring inside the organization generate information about critical internal variables. Consultants in our field frequently observe that organizations are buried in data and lacking information. For example, a friend of mine did her doctoral dissertation demonstrating that a huge spread sheet of data could be made much more useful if the data that informed current operational decisions were highlighted. Simple intervention? Yes. But implementing it required intelligent leadership to identify the data to be highlighted and allowed focused and intelligent actions on the part of the managers. And collecting the data to show that it worked required substantial skill in research methods. Getting the study approved was no small task, as you might imagine, given that the hypothesis tested was that, in effect, “throwing away” a ton of data improved information flow and management decisions.

3. Information, not data, is required.

Intelligent management requires more than having data, it requires having the right data and using it well. The requirement is not met by having an “Information Systems” department dedicated to collecting tons of data.

4. Internal and external variables must be aligned.

Aligning an organization with external variables requires careful and ongoing strategic management. Aligning internal variables requires careful and ongoing management of change—change in critical processes, policies, and practices. Not change for the sake of showing others that you are “doing something about it.”

5. Internal variables include the variables influencing individual performance.

What variables influence individual performance? They are too many and too subtle to detail here but I can describe the categories people currently use to describe the variables: compensation, culture, supervisory practices, management practices, HR practices, etc. The variables influencing performance of individuals at work—from the lowest to the highest paid person—can be understood and managed intelligently only if managers (or system designers) know what leads to what. I firmly believe, based upon all the studies I have read and all my experience in 40 years of work, that the only way to know what leads to what is to know behavioral systems analysis concepts and then apply them in real time in real organizations with real data. In other words, it is not the theory but the data-based management information that allows intelligent management.

6. The theory that shows how the multiple sets of variables interact must be simple.
Simplicity of theory is necessary because of a limitation on the humans who work in and manage organizations. The limitation is on the number of items a person can keep in focus at one time (see Miller, G., 1956). The number is about 7. There are, of course, ways of clustering multiple items into categories and so on to work with larger amounts of information. But the limitation is real and important for anyone designing knowledge work, control systems, or management systems. The easiest way to convince yourself and others that the limitation is real is to read a set of 10 numbers or letters and then attempt to remember them. (People discover that remembering 7 is a snap; remembering 10 requires some thinking to cluster them together.) A way to convince yourself and others that the limitation is not only real but important is to ask people what happens if one attempts to attain 10 goals at the same time. (Experience and the research literature both support the notion that some of the goals are not only not attained, they are not remembered.)

Another way to think about the limitation is to notice something paradoxical about experts, experts in anything. Experts can make the complex appear simple and the simple appear complex. Experts see what you and I see as complex as something simple. On the other hand, experts can describe endless complexities related to something that you and I think of as a simple issue. (They often begin by saying, “It all depends.”) Experts can see the simplicity of the underlying variables and the complexity of the detailed ways in which the variables can function. You and I can see neither because we do not know either the underlying variables or the varieties of ways the variables can interact.

Looking forward

People are right when they say theory is not enough. And when they say having a ton of data is not enough. And when they say that (whatever) is not enough. Putting it all together all at once is required. And putting it all together in a thick manual or a huge spread sheet does not work. It must be put together in a simple, complete, rigorous, and flexible package.

We are close to knowing how, as Rummelr puts it, to increase “organizational IQ” by having a simple, powerful and practical theory or model for managing organizations intelligently, managing organizations as systems. We are also within a few years of proving we can increase “organizational IQ” reliably. We are within a few decades of having much of what we do in behavioral systems analysis become common practice.

There is enough success behind us and enough challenging work ahead of us to keep many forward thinking, intelligent, and caring individuals involved for quite some time.

Annotated List of Resources

This series of papers is based upon an invited tutorial presented and the International Society for Behavior Analysis in 2002. The papers describe basic principles of behavior (reinforcement contingencies and how they operate) and general systems principles: subsystem maximization, value set, system, and feedback, total performance system, etc. More importantly, the papers link the two sets of principles together in a coherent framework.

This paper, like the one online, is intended to describe and illustrate the basic principles of behavioral systems analysis.

This little book does an excellent job of presenting the major human performance technology models and points out the similarities among them.

Malott opens the book with a story about a wise lady, a small child, and a kaleidoscope. The story provides the best illustration I know of how very simple principles can generate very complex phenomena. Malott is the Executive Director of the International Association for Behavior Analysis and an accomplished behavioral systems analysis consultant. She describes in detail what is necessary to apply the foundational notions described above, giving clear and specific examples.

Rummler, G. (In Press). Performance Consulting According to Rummler (working title). ISPI: Jossey-Bass/Pfeiffer. The working title describes the book. It is not an attempt to show common practices or best practices or an array of practices. Rather it is to show specifically how and why Rummler, a member of Training Magazine’s HRD Hall of Fame and a recipient of a Lifetime Achievement Award from the Organizational Behavior Management Network does what he does. It is a synthesis of what Rummler has learned in 40 years of exceptional work behavioral systems analysis (also known as Human Performance Technology and Organizational Behavior Management). The book describes and shows uses of several specific tools that Rummler has developed including Super System Map, the Cross-Functional Process Map, and the Human Performance System. It also illustrates what Rummler calls the Anatomy of Performance, a way of capturing the major systemic variables that must be managed to manage an organization intelligently.

Rummler, G. & Brache, A. (1995). Improving Performance: How to manage the white space on the organization chart. (Second Edition). San Francisco: Jossey-Bass. The book has supported the use of a new bit of popular jargon: the disconnect. Rummler and Brache illustrate, many times in the book, what happens when one part of an organization is not connected properly to another part. The reference to white space on organization charts is to remind us that the organization chart shows who reports to whom in the organizational hierarchy. The work of the organization occurs in the white space, the area not shown on the org chart. The white space shows the cracks through which many important management initiatives fall and fail. Rummler and Brache provide detailed applications and rationale for their work.

References

Author note: Correspondence concerning this article should be addressed to:
Dale Brethower, Ph.D.
Professor Emeritus
Department of Psychology
3700 Wood Hall
Western Michigan University
Kalamazoo MI 49008-5439
269 387-4500
email: brethower@wmich.edu

Advertising in The Behavior Analyst Today

Advertising is available in BAT. All advertising must be paid for in advance. Make your check payable to Joseph Cautilli. The copy should be in our hands 3 weeks prior to publication. Copy should be in MS Word or Word Perfect format and advertiser should include graphics or logos with ad copy.

The prices for advertising in one issue are as follows:
1/4 page: $50.00 1/2 page: $100.00 vertical or horizontal Full Page: $200.00

If you wish to run the same ad in all four issues for the year, you are eligible for the following discount:
1/4 Pg.: $40 - per issue 1/2 Pg.: $75 - per issue -vertical or horizontal Full Page: $150.00 -per issue

For more information, or place an ad, contact: Joe Cautilli via e-mail at jcautilli@cctkids.com or by phone at (215) 462-6737.